Tsunami Housing Reconstruction Program
Nagapattinam, Tamil Nadu, India

Financed by Swiss Solidarity and Swiss Red Cross
Overall Responsibility by Swiss Red Cross
Implemented by SIFFS, India
Backstopping Services by IIDS, India and Skat, Switzerland

Publications by:
Skat Foundation
Vadianstr. 42
9000 St.Gallen, Switzerland
http://www.skat.ch
email: daniel.schwitter@skat.ch

Swiss Red Cross
Rainmattstrasse 10
CH-3001 Bern
Switzerland

SIFFS
Vceansamudhram 623 002
India

Initiatives in Development Support
A-50, Vivekanand Path
North S.K Puri
Patna - 800023, Bihar, India

Skat Foundation
Vadianstrasse 42
CH-9000 St.Gallen
Switzerland

Skat
Postal account 10-15000-6
Swiss Solidarity
CH-1211 Geneva 8
Switzerland

Postal account 30-15000-6
Swiss Solidarity
CH-1211 Geneva 8
Switzerland
The event: The Tsunami of 2004 was a disaster of unprecedented magnitude and destruction, with two of the worst-hit areas being Tarangambadi and Chinnangudi villages. The disaster and its implications on the populations inhabit the villages of Chinnangudi and Tarangambadi comprises 1725 households, the majority of which are fisherfolk. In addition, there are Christian and Muslim families engaged in other occupations. Dalit populations inhabit street hamlets on the periphery of the village. As many as 304 lives of residents of Tarangambadi were lost due to the Tsunami, of which more than 130 were of young children. It also resulted in complete damage of 904 houses, and partial damage of about 266 houses. A large number of fisher households lost valuable productive assets in the Tsunami. This included as many as 128 fibre boats, and about 200 catamarans. In Chinnangudi 137 houses were completely destroyed, and 131 were partially damaged. The village suffered 48 deaths, 22 of which were children.

The project objective follows a holistic approach. The project aimed at improving the living conditions of the community, particularly disadvantaged persons and minorities. It is also safeguarding against future tsunamies and other natural calamities. New livelihood opportunities were established and local skills developed. Out of 1000 houses constructed, about 250 were built in-situ. The village was relocated to a reconstruction area provided by the Government.

The project was divided into clusters of 25 - 50 houses. An elected committee of five house-owners managed the cluster along with a cluster volunteer. They are aided by a team of project engineers, architects and community development officers. Cluster engineers were trained to make decisions at a micro-level with house-owners to control the details of each house. The project avoided the use of big contractors. The actual construction is done by labour teams who are trained by house-owners to control the details of each house. The project considered a house as a customizable product, which has many cultural, economic, technical and political dimensions. The process of making this product is equally important. House owners had a say in the house they live in and had the freedom to select 1 out of 7 design options. They also choose the details and the different material options which results in a large variety in designs. The building provided by the project was seen as a core unit that can be adjusted and extended by the house owner. By now, every house looks different.

The project tried to overcome the typical limitations of mass housing in the early planning stage. The decision to avoid contractors was part of the strategy. Contractors were used to provide labour, while building materials were supplied by the project. Supervision was done by house-owners, cluster volunteers and engineers. This approach called for appropriate technologies well known in the area, e.g. RCC framing and brickwork filling. The quality of construction achieved, and the way people occupied, extended and improved their houses proves that the applied strategy was well chosen.

The involvement of the people in the design process, the rights of the poor to have choices, and the allotment of plots before construction were instrumental in creating ownership. However, providing space for all these stakeholders to voice their opinion has necessitated resolving conflicting demands - the administration wanted speedy delivery, the community wanted immediate resolution of conflicts; observers sought no compromise on quality. Introducing a social perspective in the minds of the technical team was met with some difficulty.

Project Approach

- **Analysis of damages**, sharing them with community
- **Habitat mapping**, to understand the spaces and people's needs
- **Socio-economic survey**, to collect information on housing, livelihood, etc.
- **Awareness creation** amongst villagers on safety, location and construction process
- **Construction of 7 model houses**, to get feedback from community
- **Formation of cluster committees**, to supervise the construction
- **Training of house-owners**, to make them aware of their responsibilities in the construction process
- **Training of engineers andasons**, to ensure construction quality

Road Map

1. **Awareness creation** amongst villagers on safety, location and construction process
2. **Construction of 7 model houses**, to get feedback from community
3. **Formation of cluster committees**, to supervise the construction
4. **Training of house-owners**, to make them aware of their responsibilities in the construction process
5. **Training of engineers andasons**, to ensure construction quality

Cluster Approach

- The project considered a house as a customizable product, which has many cultural, economic, technical and political dimensions. The process of making this product is equally important. House owners had a say in the house they live in and had the freedom to select 1 out of 7 design options. They also choose the details and the different material options which results in a large variety in designs. The building provided by the project was seen as a core unit that can be adjusted and extended by the house owner. By now, every house looks different.

Strategy

- The project tried to overcome the typical limitations of mass housing in the early planning stage. The decision to avoid contractors was part of the strategy. Contractors were used to provide labour, while building materials were supplied by the project. Supervision was done by house-owners, cluster volunteers and engineers. This approach called for appropriate technologies well known in the area, e.g. RCC framing and brickwork filling. The quality of construction achieved, and the way people occupied, extended and improved their houses proves that the applied strategy was well chosen.

Challenges

- The involvement of the people in the design process, the rights of the poor to have choices, and the allotment of plots before construction were instrumental in creating ownership. However, providing space for all these stakeholders to voice their opinion has necessitated resolving conflicting demands - the administration wanted speedy delivery, the community wanted immediate resolution of conflicts; observers sought no compromise on quality. Introducing a social perspective in the minds of the technical team was met with some difficulty.
The event
The Tsunami of 26 December 2004 was a disaster of unprecedented magnitude and destruction. Nagapattinam in Tamil Nadu, on the eastern coast of India was one of the worst affected districts, and within the district, Tarangambadi and Chinnangudi villages were two of the worst hit. Tarangambadi comprises 1725 households, the majority of which are fisher families. In addition, there are Christian and Muslim families engaged in other occupations. Dalit populations inhabit street hamlets on the periphery of the village. As many as 304 lives of residents of Tarangambadi were lost due to the Tsunami, of which more than 130 were of young children. It also resulted in complete damage of 904 houses, and partial damage of about 266 houses. A large number of fisher households lost valuable productive assets in the Tsunami. This included as many as 128 fibre boats, and about 200 catamarans. In Chinnangudi 137 houses were completely destroyed, and 131 were partially damaged. The village suffered 48 deaths, 22 of which were children.

The severe loss
The project objective follows a holistic approach. Beside the provision of physical habitat and community infrastructure, the project aims at improving the living conditions of the community, particularly disadvantaged persons and minorities. It is also safeguarding against future tsunamis and other natural calamities. New livelihood opportunities were established and local skills developed. Out of 1000 houses constructed, about 250 were built in-situ. The village suffered 48 deaths, 22 of which were children.

The project
The project was divided into clusters of 25 - 50 houses. An elected committee of five house-owners managed the cluster along with a cluster volunteer. They are aided by a team of project engineers, architects and community development officers. Cluster engineers were trained to make decisions at a micro-level with house-owners to control the details of each house. The project considered a house as a customizable product, which has many cultural, economic, technical and political dimensions. The process of making this product is equally important. House owners had a say in the house they live in and had the freedom to select 1 out of 7 design options. They also choose the details and the different material options which results in a large variety in designs. The building provided by the project was seen as a core unit that can be adjusted and extended by the house owner. By now, every house looks different.

The road map
The project considered a house as a customizable product, which has many cultural, economic, technical and political dimensions. The process of making this product is equally important. House owners had a say in the house they live in and had the freedom to select 1 out of 7 design options. They also choose the details and the different material options which results in a large variety in designs. The building provided by the project was seen as a core unit that can be adjusted and extended by the house owner. By now, every house looks different.

The cluster approach
The project tried to overcome the typical limitations of mass housing in the early planning stage. The decision to avoid contractors was part of the strategy. Contractors were used to provide labour, while building materials were supplied by the project. Supervision was done by house-owners, cluster volunteers and engineers. This approach called for appropriate technologies well known in the area, e.g. RCC framing and brickwork filling. The quality of construction achieved, and the way people occupied, extended and improved their houses proves that the applied strategy was well chosen.

The strategy
The involvement of the people in the design process, the rights of the poor to have choices, and the allotment of plots before construction were instrumental in creating ownership. However, providing space for all these stakeholders to voice their opinion has necessitated resolving conflicting demands – the administration wanted speedy delivery, the community wanted immediate resolution of conflicts; observers sought no compromise on quality. Introducing a social perspective in the minds of the technical team was met with some difficulty.

The challenges

<table>
<thead>
<tr>
<th>Event</th>
<th>Severe loss</th>
<th>Project</th>
<th>Road map</th>
<th>Cluster approach</th>
<th>Strategy</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Tsunami of 26 Dec 2004</td>
<td>A disaster of unprecedented magnitude and destruction.</td>
<td>The project objective follows a holistic approach.</td>
<td>The project was divided into clusters of 25 - 50 houses.</td>
<td>The project considered a house as a customizable product, which has many</td>
<td>The project tried to overcome the typical limitations of mass housing</td>
<td>The involvement of the people in the design process, the rights of the</td>
</tr>
<tr>
<td></td>
<td>As many as 304 lives of residents of Tarangambadi were lost due to the</td>
<td>Beside the provision of physical habitat and community infrastructure.</td>
<td>An elected committee of five house-owners managed the cluster along with</td>
<td>cultural, economic, technical and political dimensions. The process of</td>
<td>in the early planning stage. The decision to avoid contractors was part</td>
<td>poor to have choices, and the allotment of plots before construction</td>
</tr>
<tr>
<td></td>
<td>Tsunami, of which more than 130 were of young children. It also resulted</td>
<td>the project aims at improving the living conditions of the community,</td>
<td>a cluster volunteer. They are aided by a team of project engineers,</td>
<td>making this product is equally important. House owners had a say in the</td>
<td>of the strategy.</td>
<td>were instrumental in creating ownership. However, providing space for</td>
</tr>
<tr>
<td></td>
<td>in complete damage of 904 houses, and partial damage of about 266 houses.</td>
<td>particularly disadvantaged persons and minorities. It is also</td>
<td>architects and community development officers. Cluster engineers were</td>
<td>house they live in and had the freedom to select 1 out of 7 design options.</td>
<td></td>
<td>all these stakeholders to voice their opinion has necessitated resolving</td>
</tr>
<tr>
<td></td>
<td>A large number of fisher households lost valuable productive assets in the</td>
<td>safeguarding against future tsunamis and other natural calamities.</td>
<td>trained to make decisions at a micro-level with house-owners to control</td>
<td>They also choose the details and the different material options which</td>
<td></td>
<td>conflicting demands – the administration wanted speedy delivery, the</td>
</tr>
<tr>
<td></td>
<td>Tsunami. This included as many as 128 fibre boats, and about 200</td>
<td>New livelihood opportunities were established and local skills developed.</td>
<td>the details of each house. The project avoided the use of big contractors.</td>
<td>results in a large variety in designs. The building provided by the project</td>
<td></td>
<td>community wanted immediate resolution of conflicts; observers sought</td>
</tr>
<tr>
<td></td>
<td>catamarans. In Chinnangudi 137 houses were completely destroyed, and 131</td>
<td>Out of 1000 houses constructed, about 250 were built in-situ. 750</td>
<td>The actual construction is done by labour teams who are trained so that</td>
<td>was seen as a core unit that can be adjusted and extended by the house</td>
<td></td>
<td>no compromise on quality. Introducing a social perspective in the minds</td>
</tr>
<tr>
<td></td>
<td>were partially damaged. The village suffered 48 deaths, 22 of which were</td>
<td>families had to be relocated to a reconstruction area provided by the</td>
<td>quality of construction is ensured.</td>
<td>owner. By now, every house looks different.</td>
<td></td>
<td>of the technical team was met with some difficulty.</td>
</tr>
</tbody>
</table>

The involvement of the people in the design process, the rights of the poor to have choices, and the allotment of plots before construction were instrumental in creating ownership. However, providing space for all these stakeholders to voice their opinion has necessitated resolving conflicting demands – the administration wanted speedy delivery, the community wanted immediate resolution of conflicts; observers sought no compromise on quality. Introducing a social perspective in the minds of the technical team was met with some difficulty.
Tsunami Housing Reconstruction Program
Nagapattinam, Tamil Nadu, India

Published by:
Skat Foundation
Vadianstr. 42
9000 St. Gallen, Switzerland
http://www.skat.ch
Email: daniel.schwitter@skat.ch

Financed by Swiss Solidarity and Swiss Red Cross
Overall Responsibility by Swiss Red Cross
Implemented by SIFFS, India
Backstopping Services by IIDS, India and Skat, Switzerland
PROJECT SCOPE

Number of houses built: 1000
Number of villages reconstructed: 2
Plot size 9.15 m x 12.20 m: 111.60 m²
Built up house area, excluding toilet/bathroom: 31.60 m²
Built up house area, including toilet/bathroom: 37.40 m²
Construction period: 2005 - 2008

SEVEN STANDARD CORE UNITS

option 3 (two stories)

option 1

option 2

option 3 (two stories)

option 4

option 5

option 6

option 7 (earth construction)

BUILDING COST AND MATERIALS USED

Overall costs (infrastructure works): $ 6'544'600.-
Cost per house: $ 5'577.-
Cost per m², excl. toilet/bathroom: $ 176.-
Cost per m², incl. toilet/bathroom: $ 149.-
Foundations (designed for two stories): concrete
Walls: R.C.C. columns / bricks
Roof walkable, designed to accommodate 2nd floor: concrete slab

Legend
1 living
2 bed room
3 kitchen
4 WC
5 bath
6 pooja room
7 stair case
8 veranda
9 wash place
Mass housing as a customized product

Fulfilled dreams
To consider a house as a customized product has many cultural, economic, technical and political dimensions. Seven core design options were developed in a participatory process together with the community. All options meet the required quality standards of Swiss Solidarity and the local government with regard to safety, health, space. At the same time they offer immense flexibility for individual extensions in horizontal and vertical direction. The project encouraged and advised the house owners in extending and improving the core units. Most of them have taken the opportunity to respond to individual needs according to their taste and financial capacity and thus build the house of their dreams.